Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Wound Care (New Rochelle) ; 11(11): 575-597, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34806432

RESUMO

Significance: Skin wounds and disorders compromise the protective functions of skin and patient quality of life. Although accessible on the surface, they are challenging to address due to paucity of effective therapies. Exogenous extracellular vesicles (EVs) and cell-free derivatives of adult multipotent stromal cells (MSCs) are developing as a treatment modality. Knowledge of origin MSCs, EV processing, and mode of action is necessary for directed use of EVs in preclinical studies and methodical translation. Recent Advances: Nanoscale to microscale EVs, although from nonskin cells, induce functional responses in cutaneous wound cellular milieu. EVs allow a shift from cell-based to cell-free/derived modalities by carrying the MSC beneficial factors but eliminating risks associated with MSC transplantation. EVs have demonstrated striking efficacy in resolution of preclinical wound models, specifically within the complexity of skin structure and wound pathology. Critical Issues: To facilitate comparison across studies, tissue sources and processing of MSCs, culture conditions, isolation and preparations of EVs, and vesicle sizes require standardization as these criteria influence EV types and contents, and potentially determine the induced biological responses. Procedural parameters for all steps preceding the actual therapeutic administration may be the key to generating EVs that demonstrate consistent efficacy through known mechanisms. We provide a comprehensive review of such parameters and the subsequent tissue, cellular and molecular impact of the derived EVs in different skin wounds/disorders. Future Directions: We will gain more complete knowledge of EV-induced effects in skin, and specificity for different wounds/conditions. The safety and efficacy of current preclinical xenogenic applications will favor translation into allogenic clinical applications of EVs as a biologic.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Qualidade de Vida
2.
J Transl Med ; 19(1): 16, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407615

RESUMO

BACKGROUND: Cutaneous wounds in patients with diabetes exhibit impaired healing due to physiological impediments and conventional care options are severely limited. Multipotent stromal cells (MSCs) have been touted as a powerful new therapy for diabetic tissue repair owing to their trophic activity and low immunogenicity. However, variations in sources and access are limiting factors for broader adaptation and study of MSC-based therapies. Amniotic fluid presents a relatively unexplored source of MSCs and one with wide availability. Here, we investigate the potential of amniotic fluid-derived multipotent stromal cells (AFMSCs) to restore molecular integrity to diabetic wounds, amend pathology and promote wound healing. METHOD: We obtained third trimester amniotic fluid from term cesarean delivery and isolated and expanded MSCs in vitro. We then generated 10 mm wounds in Leprdb/db diabetic mouse skin, and splinted them open to allow for humanized wound modeling. Immediately after wounding, we applied AFMSCs topically to the sites of injuries on diabetic mice, while media application only, defined as vehicle, served as controls. Post-treatment, we compared healing time and molecular and cellular events of AFMSC-treated, vehicle-treated, untreated diabetic, and non-diabetic wounds. A priori statistical analyses measures determined significance of the data. RESULT: Average time to wound closure was approximately 19 days in AFMSC-treated diabetic wounds. This was significantly lower than the vehicle-treated diabetic wounds, which required on average 27.5 days to heal (p < 0.01), and most similar to time of closure in wild type untreated wounds (an average of around 18 days). In addition, AFMSC treatment induced changes in the profiles of macrophage polarizing cytokines, resulting in a change in macrophage composition in the diabetic wound bed. We found no evidence of AFMSC engraftment or biotherapy induced immune response. CONCLUSION: Treatment of diabetic wounds using amniotic fluid-derived MSCs encourages cutaneous tissue repair through affecting inflammatory cell behavior in the wound site. Since vehicle-treated diabetic wounds did not demonstrate accelerated healing, we determined that AFMSCs were therapeutic through their paracrine activities. Future studies should be aimed towards validating our observations through further examination of the paracrine potential of AFMSCs. In addition, investigations concerning safety and efficacy of this therapy in clinical trials should be pursued.


Assuntos
Líquido Amniótico , Diabetes Mellitus Experimental , Animais , Diabetes Mellitus Experimental/terapia , Feminino , Humanos , Macrófagos , Camundongos , Gravidez , Pele , Células Estromais , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...